Sábado, 17 de enero de 2026 Sáb 17/01/2026
RSS Contacto
MERCADOS
Cargando datos de mercados...
Ciencia

Hubble Snaps Stellar Baby Pictures

Hubble Snaps Stellar Baby Pictures
Artículo Completo 829 palabras
Newly developing stars shrouded in thick dust get their first baby pictures in these images from NASA’s Hubble Space Telescope. Hubble took these infant star snapshots in an effort to learn how massive stars form. Protostars are shrouded in thick dust that blocks light, but Hubble can detect the near-infrared emission that shines through holes […]
Explore Hubble

3 min read

Hubble Snaps Stellar Baby Pictures

NASA Hubble Mission Team

Goddard Space Flight Center

Jan 17, 2026 Article
The Cepheus A region is home to a number of infant stars, including a protostar that is responsible for much of the region’s illumination.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) Star-forming region G033.91+0.11 is home to a protostar hidden within a reflection nebula.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) A protostar is swathed in the gas of an emission nebula within star-forming region GAL-305.20+00.21.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) A protostar’s jets of high-speed particles are responsible for the bright region of excited, glowing hydrogen in this Hubble image.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America)

Newly developing stars shrouded in thick dust get their first baby pictures in these images from NASA’s Hubble Space Telescope. Hubble took these infant star snapshots in an effort to learn how massive stars form.

Protostars are shrouded in thick dust that blocks light, but Hubble can detect the near-infrared emission that shines through holes formed by the protostar’s jets of gas and dust. The radiating energy can provide information about these “outflow cavities,” like their structure, radiation fields, and dust content. Researchers look for connections between the properties of these young stars – like outflows, environment, mass, brightness – and their evolutionary stage to test massive star formation theories.

These images were taken as part of the SOFIA Massive (SOMA) Star Formation Survey, which investigates how stars form, especially massive stars with more than eight times the mass of our Sun.

The Cepheus A region is home to a number of infant stars, including a protostar that is responsible for much of the region’s illumination.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) Download this image (5.7 MB)

The high-mass star-forming region Cepheus A hosts a collection of baby stars, including one large and luminous protostar, which accounts for about half of the region’s brightness. While much of the region is shrouded in opaque dust, light from hidden stars breaks through outflow cavities to illuminate and energize areas of gas and dust, creating pink and white nebulae. The pink area is an HII region, where the intense ultraviolet radiation of the nearby stars has converted the surrounding clouds of gas into glowing, ionized hydrogen.
Cepheus A lies about 2,400 light-years away in the constellation Cepheus.

Star-forming region G033.91+0.11 is home to a protostar hidden within a reflection nebula.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) Download this image (5.8 MB)

Glittering much closer to home, this Hubble image depicts the star-forming region G033.91+0.11 in our Milky Way galaxy. The light patch in the center of the image is a reflection nebula, in which light from a hidden protostar bounces off gas and dust.

A protostar is swathed in the gas of an emission nebula within star-forming region GAL-305.20+00.21.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) Download this image (5.8 MB)

This Hubble image showcases the star-forming region GAL-305.20+00.21. The bright spot in the center-right of the image is an emission nebula, glowing gas that is ionized by a protostar buried within the larger complex of gas and dust clouds.

A protostar’s jets of high-speed particles are responsible for the bright region of excited, glowing hydrogen in this Hubble image.NASA, ESA, and R. Fedriani (Instituto de Astrofisica de Andalucia); Processing: Gladys Kober (NASA/Catholic University of America) Download this image (5.7 MB)

Shrouded in gas and dust, the massive protostar IRAS 20126+4104 lies within a high-mass star-forming region about 5,300 light-years away in the constellation Cygnus. This actively forming star is a B-type protostar, characterized by its high luminosity, bluish-white color, and very high temperature. The bright region of ionized hydrogen at the center of the image is energized by jets emerging from the poles of the protostar, which ground-based observatories previously observed.

New images added every day between January 12-17, 2026! Follow @NASAHubble on social media for the latest Hubble images and news and see Hubble's Stellar Construction Zones for more images of young stellar objects.

Facebook logo @NASAHubble@NASAHubble Instagram logo @NASAHubble

Explore More

Exploring the Birth of Stars Hubble's Nebulae

Media Contact:

Claire Andreoli
NASA's Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share

Details

Last Updated Jan 17, 2026 LocationNASA Goddard Space Flight Center

Related Terms

Keep Exploring

Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

Hubble’s Stellar Construction Zones

Hubble’s Night Sky Challenge

Hubble’s 35th Anniversary

Fuente original: Leer en Nasa - Ciencia
Compartir